首页 > 编程学习 > 智能千变模板与AI人工智能的作用

智能千变模板与AI人工智能的作用

发布时间:2022/1/17 12:12:13

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

 人工智能时代已经来临,5G技术对社会生产力产生了巨大变革,未来的6G、7G、8G我相信离我们也不远,我相信这是人类社会的共同期待。智能千变模板和云推机就是人工智能领域下衍生出的应用产物,对个人和企业都产生了巨大作用。

 

人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 [1]  2017年12月,人工智能入选“2017年度中国媒体十大流行语”。 [2]  2021年9月25日,为促进人工智能健康发展,《新一代人工智能伦理规范》发布。

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。 

 

    于社会进步而言,人工智能技术为社会治理提供了全新的技术和思路,将人工智能运用于社会治理中,是降低治理成本、提升治理效率、减少治理干扰最直接、最有效的方式;于日常生活而言,深度学习、图像识别、语音识别等人工智能技术已经广泛应用于智能终端、智能家居、移动支付等领域,未来人工智能技术还将在教育、医疗、出行等等与人民生活息息相关的领域里发挥更为显著的作用,为普通民众提供覆盖更广、体验感更优、便利性更佳的生活服务。

                                       人工智能的重要意义及作用

人工智能是相对于人类智能而言的。它是指用机械和电子装置来模拟和代替
人类的某些智能。人工智能也称“机器智能”或“智能模拟”。当今人工智能主要是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的活动,即结构模拟。

人脑是智能活动的物质基础是由上百亿个神经元组成的复杂系统。结构模拟
是从单个神经元入手的先用电子元件制成神经元模型,然后把神经元模型连接成神
经网络(脑模型),以完成某种功能,模拟人的某些智能。如1957年美国康乃尔大学
罗森布莱特等人设计的“感知机”;1975年日本的福岛设计的“认知机”(自组织多层神经网络)。

 

 

电子计算机是智能模拟的物质技术工具。它是一种自动、高速处理信息的申
子机器。它采用五个与大脑功能相似的部件组成了电脑,来模拟人脑的相应功能。

这五个部件是:

(1)输入设备,模拟人的感受器(眼、耳、鼻等),用以接受外来的信息。人通过输入设备将需要计算机完成的任务、课题、运算步骤和原始数据采用机器所能接受的形式告诉计算机并经输入设备把这些存放到存贮器中。

(2)存贮器,模拟人脑的记忆功能将输入的信息存储起来,供随时提取使用,是电子计算机的记忆装置。

(3)运算器,模拟人脑的计算、判断和选择功能,能进行加减乘除等算术运算和逻辑运算。

(4)控制器,人脑的分析综合活动以及通过思维活动对各个协调工作的控制功能根据存贮器内的程序控制计算机的各个部分协调工作。它是电脑的神经中枢。

奠定当下的商业化的理论知识,可以追溯到 70 年前

1. 1943-2006 年:理论知识积累的时期,相关研究进展缓慢

回顾人工智能早期发展史,其可以追溯至 1943 年,直至 2006年之前由于当时的算力受限 且数据不足,算法没办法充分发挥其作用,这一阶段主要是人工智能理论知识的启蒙与积累 阶段,期间也曾产生一些阶段性成果,但整体研究进展较为缓慢。其中,一些典型的理论积累如下:

思想启蒙:1943 年,沃伦〃麦卡洛克和沃尔特〃皮茨发表了《神经活动中内在思想的逻辑 演算》,这启发了后来神经网络和深度学习的产生。1950 年著名的图灵测试诞生,按照“人 工智能之父”艾伦〃图灵的定义:如果一台机器能够与人类展开对话(通过电传设备)而不 能被辨别出其机器身份,那么称这台机器具有智能。1956年夏天,美国达特茅斯学院举行了历史上第一次人工智能研讨会,被认为是人工智能诞生的标志。会上,麦卡锡首次提出了 “人工智能”这个概念,纽厄尔和西蒙则展示了编写的逻辑理论机器。

 从推理期至知识期,期间推出大量专家系统。20 世纪 50-70 年代,人们认为如果能赋予计算机推理能力,机器就有智能,人工智能研究处于“推理期”,之后人们意识到人类能够进行判断、决策还需要知识,人工智能在 70 年代进入“知识期”,诞生了大量的专家系统如 Dendral,但由于当时的计算机有限的内存和处理速度不足以解决任何实际的人工智能问题, 导致研究缺乏进展,美国和英国相继缩减经费支持,人工智能进入第一次低谷。

 

 第五代计算机项目:1981 年,日本经济产业省拨款 8.5 亿美元用以研发第五代计算机项目, 在当时被叫做人工智能计算机。随后,英国、美国纷纷响应,开始向信息技术领域的研究提 供大量资金。但是专家系统的实用性仅仅局限于某些特定情景。到了上世纪 80 年代晚期, 美国国防部高级研究计划局(DARPA)的新任领导认为人工智能并非“下一个浪潮”,拨款将倾向于那些看起来更容易出成果的项目;此外第五代计算机项目宣告失败,人工智能进入 第二次低谷期。

2006-2016 年:算法、算力与数据三重合力推动,人工智能取得重大突破

人工智能算法的开发通常离不开三个核心要素,即算法、算力、数据。2006-2016 年这十年 间,这三大核心要素均迎来了质的飞跃:

第一重飞跃:深度学习算法能够支持训练更大规模的神经网络。深度学习算法能够训练更大 规模的神经网络 2006 年 Geoffrey Hinton 和他的学生 Ruslan Salakhutdinov 在《科学》上发 表文章,给出多层神经网络更好训练方法,至此神经网络算法才开始真正具有深度。与过去 传统的人工智能算法相比,深度学习算法能够训练更大规模的神经网络,从而解决更复杂的 问题,而且随着数据规模的提升,规模越大的神经网络的深度学习算法表现出的效果越显著。

 

第二重飞跃:芯片发展遵循摩尔定律,算力得到质的提升。摩尔定律指出芯片上可容纳的晶 体管数目,约每隔 18 个月便会增加一倍,性能也将提升一倍。1945 年世界上第一台计算机 ENIAC 的速度是能在一秒内完成 5000 次定点的加减法运算,到 2007 年采用英特尔酷睿芯 片的个人电脑计算速度为每秒 500 亿次浮点运算,是 ENIAC 的 1000 万倍,体积和耗电量 却小了很多;到 2012 年全球最快的计算机 IBM 的红杉的计算速度为 1.6 亿亿次,比 19 个 月前竟提高了将近 6 倍。(数据来源:吴军《浪潮之巅》)通过以上几组数据可以发现,自 2006 年 Geoffrey Hinton 发布有关深度学习的文章后,计算机的算力得到了质的提升,可以有效 的支撑大规模的模型训练。

第三重飞跃:PC 互联网与移动互联网的发展为人工智能模型训练提供了庞大的数据积累。 PC 互联网的发展使用户的许多场景线上化,比如新闻讯息、邮件、电商等,产生了相当规 模的数据;而移动互联网又进一步地将智能手机等更多终端纳入互联网体系,并产生丰富新 的应用,使数据规模得到了进一步地增长。根据 IDC 预测,全球数据圈将从 2018 年的 33ZB 增至 2025 年的 175ZB。

 

三重合力推动人工智能在多领域取得技术突破,逐步开始具有商业价值。在更强大的算力支 撑下,通过大规模训练数据喂养的深度学习算法模型表现出更优异的效果,推动计算机视觉、 语音识别等领域取得了重大的技术突破,比如 2014 年香港中文大学汤晓鸥教授团队发布 DeepID 系列人脸识别算法准确率达到 98.52%,全球首次超过人眼识别率,突破了工业化应 用红线;根据易观数据,2009 年深度神经网络算法被应用于语音识别领域时,语音识别准 确率突破 90%,至 2016 年百度、搜狗等头部公司都先后宣布其语音识别率达到了 97%。这 一阶段,人工智能开始呈现出一定的应用价值,开始逐步走向商业化。

   推断未来看不同 AI 人工智能是适合采用软硬一体的商业模式还是以算法等软件为主的商业 模式,核心在于其所处行业客户所需要的产品是以标准化为主还是定制化为主,比如在安防、 智慧社区等场景中,AI人工智能产品需要结合客户的需求进行定制化,可能更适合软硬一体的解决方案; 而在医疗、自动驾驶领域,产品可以被标准化,则通过售卖标准化的软件产品有望获得更高 的设置期待。

Copyright © 2010-2022 ngui.cc 版权所有 |关于我们| 联系方式| 豫B2-20100000