首页 > 编程学习 > python3可以运行python2的代码吗_机器学习从Python 2迁移到Python 3,你需要注意的一些事……...

▌从类型提示(运行前)到类型检查(运行时)

默认情况下,函数的注释对于代码的运行是没有影响的,它只是帮你指出每段代码所要做的工作。

在代码运行阶段,很多时候类型提示工具是不起作用的。这种情况你可以使用 enforce 等工具,强制性对代码进行类型检查,同时也可以帮助你调试代码。

@enforce.runtime_validation

def foo(text: str) -> None:

print(text)

foo('Hi') # ok

foo(5) # fails

@enforce.runtime_validation

def any2(x: List[bool]) -> bool:

return any(x)

any ([False, False, True, False]) # True

any2([False, False, True, False]) # True

any (['False']) # True

any2(['False']) # fails

any ([False, None, "", 0]) # False

any2([False, None, "", 0]) # fails

▌函数注释的其他用途

正如上面我们提到的,函数的注释部分不仅不会影响代码的执行,还会提供可以随时使用的一些元信息(meta-information)。

例如,计量单位是科学界的一个普遍难题,Python3中的astropy包提供了一个简单的装饰器(Decorator)来控制输入的计量单位,并将输出转换成相应的单位。

#Python 3

from astropy import units as u

@u.quantity_input()

def frequency(speed: u.meter / u.s, wavelength: u.m) -> u.terahertz:

return speed / wavelength

frequency(speed=300_000 * u.km / u.s, wavelength=555 * u.nm)

# output: 540.5405405405404 THz, frequency of green visible light

如果你需要用Python处理表格类型的科学数据,你可以尝试astropy包,体验一下计量单位随意转换的方便性。你还可以针对某个应用专门定义一个装饰器,用同样的方式来控制或转换输入和输出的计量单位。

▌通过 @ 实现矩阵乘法

下面,我们实现一个最简单的机器学习模型,即带 L2 正则化的线性回归 (如岭回归模型),来对比 Python2 和 Python3 之间的差别:

# l2-regularized linear regression: || AX - b ||^2 + alpha * ||x||^2 -> min

# Python 2

X = np.linalg.inv(np.dot(A.T, A) + alpha * np.eye(A.shape[1])).dot(A.T.dot(b))

# Python 3

X = np.linalg.inv(A.T @ A + alpha * np.eye(A.shape[1])) @ (A.T @ b)

在 Python3 中,以@作为矩阵乘法符号使得代码整体的可读性更强,且更容易在不同的深度学习框架间进行转译:因为一些代码如 X @ W + b[None, :]在 numpy、cupy、pytorch 和 tensorflow 等不同库中都表示单层感知机。

▌使用**作为通配符

Python2 中使用递归文件夹的通配符并不是很方便,因此可以通过定制的 glob2 模块来解决这个问题。递归 flag 在 Python 3.6 中得到了支持。

import glob

# Python 2

found_images = \

glob.glob('/path/*.jpg') \

+ glob.glob('/path/*/*.jpg') \

+ glob.glob('/path/*/*/*.jpg') \

+ glob.glob('/path/*/*/*/*.jpg') \

+ glob.glob('/path/*/*/*/*/*.jpg')

# Python 3

found_images = glob.glob('/path/**/*.jpg', recursive=True)

Python3 中更好的选择是使用 pathlib:(缺少个import)

# Python 3

found_images = pathlib.Path('/path/').glob('**/*.jpg')

▌Python3中的print函数

诚然,print 在 Python3 中是一个函数,使用 print 需要加上圆括弧(),虽然这是个麻烦的操作,但它还是具有一些优点:

使用文件描述符的简单句法:

print >>sys.stderr, "critical error" # Python 2

print("critical error", file=sys.stderr) # Python 3

在不使用str.join情况下能够输出 tab-aligned 表格:

# Python 3

print(*array, sep='\t')

print(batch, epoch, loss, accuracy, time, sep='\t')

修改与重新定义 print 函数的输出:

# Python 3

_print = print # store the original print function

def print(*args, **kargs):

pass # do something useful, e.g. store output to some file

在 Jupyter notebook 中,这种形式能够记录每一个独立的文档输出,并在出现错误的时候追踪到报错的文档。这能方便我们快速定位并解决错误信息。因此我们可以重写 print 函数。

在下面的代码中,我们可以使用上下文管理器来重写 print 函数的行为:

@contextlib.contextmanager

def replace_print():

import builtins

_print = print # saving old print function

# or use some other function here

builtins.print = lambda *args, **kwargs: _print('new printing', *args, **kwargs)

yield

builtins.print = _print

with replace_print():

但是,重写print函数的行为,我们并不推荐,因为它会引起系统的不稳定。

print函数可以结合列表生成器或其它语言结构一起使用。

# Python 3

result = process(x) if is_valid(x) else print('invalid item: ', x)

▌f-strings 可作为简单和可靠的格式化

默认的格式化系统提供了一些灵活性操作。但在数据实验中这些操作不仅不是必须的,还会导致代码的修改变得冗长和琐碎。

而数据科学通常需要以固定的格式,迭代地打印出一些日志信息,所使用的代码如下:

# Python 2

print('{batch:3} {epoch:3} / {total_epochs:3} accuracy: {acc_mean:0.4f}±{acc_std:0.4f} time: {avg_time:3.2f}'.format(

batch=batch, epoch=epoch, total_epochs=total_epochs,

acc_mean=numpy.mean(accuracies), acc_std=numpy.std(accuracies),

avg_time=time / len(data_batch)

))

# Python 2 (too error-prone during fast modifications, please avoid):

print('{:3} {:3} / {:3} accuracy: {:0.4f}±{:0.4f} time: {:3.2f}'.format(

batch, epoch, total_epochs, numpy.mean(accuracies), numpy.std(accuracies),

time / len(data_batch)

))

样本输出为:

120 12 / 300 accuracy: 0.8180±0.4649 time: 56.60

Python 3.6 中引入了格式化字符串 (f-strings):

# Python 3.6+

print(f'{batch:3} {epoch:3} / {total_epochs:3} accuracy: {numpy.mean(accuracies):0.4f}±{numpy.std(accuracies):0.4f} time: {time / len(data_batch):3.2f}')

另外,这对于查询语句的书写也是非常方便的:

query = f"INSERT INTO STATION VALUES (13, '{city}', '{state}', {latitude}, {longitude})"

▌「true division」和「integer division」之间的明显区别

虽然说对于系统编程来说,Python3所提供的改进还远远不够,但这些便利对于数据科学来说已经足够。

data = pandas.read_csv('timing.csv')

velocity = data['distance'] / data['time']

Python 2 中的结果依赖于『时间』和『距离』(例如,以米和秒为单位),关注其是否被保存为整数。

而在 Python 3 中,结果的表示都是精确的,因为除法运算得到的都是精确的浮点数。

另一个例子是整数除法,现在已经作为明确的运算:

n_gifts = money // gift_price # correct for int and float arguments

值得注意的是,整除运算可以应用到Python的内建类型和由numpy、pandas等数据包提供的自定义类型。

▌严格排序

下面是一个严格排序的例子:

# All these comparisons are illegal in Python 3

3 < '3'

2 < None

(3, 4) < (3, None)

(4, 5) < [4, 5]

# False in both Python 2 and Python 3

(4, 5) == [4, 5]

严格排序的主要功能有:

防止不同类型实例之间的偶然性排序。

sorted([2, ‘1’, 3]) # invalid for Python 3, in Python 2 returns [2, 3, ‘1’]

在处理原始数据时帮助我们发现存在的问题。此外,严格排序对None值的合适性检查是(这对于两个版本的 Python 都适用):

```

if a is not None:

pass

if a: # WRONG check for None

pass

▌自然语言处理中的Unicode编码

下面来看一个自然语言处理任务:

s = '您好'

print(len(s))

print(s[:2])

比较两个版本Python的输出:

Python2: 6\n��

Python3: 2\n 您好

再来看个例子:

x = u'со'

x += 'co' # ok

x += 'со' # fail

在这里,Python 2 会报错,而 Python 3 能够正常工作。因为我在字符串中使用了俄文字母,对于Python2 是无法识别或编码这样的字符。

Python 3 中的 strs 是 Unicode 字符串,这对非英语文本的自然语言处理任务来说将更加地方便。还有些其它有趣的应用,例如:

'a' < type < u'a' # Python 2: True

'a' < u'a' # Python 2: False

from collections import Counter

Counter('Möbelstück')

Python 2: Counter({‘\xc3’: 2, ‘b’: 1, ‘e’: 1, ‘c’: 1, ‘k’: 1, ‘M’: 1, ‘l’: 1, ‘s’: 1, ‘t’: 1, ‘\xb6’: 1, ‘\xbc’: 1})

Python 3: Counter({‘M’: 1, ‘ö’: 1, ‘b’: 1, ‘e’: 1, ‘l’: 1, ‘s’: 1, ‘t’: 1, ‘ü’: 1, ‘c’: 1, ‘k’: 1})

对于这些,Python 2 也能正常地工作,但 Python 3 的支持更为友好。

▌保留词典和**kwargs 的顺序

CPython 3.6+ 的版本中字典的默认行为是一种类似 OrderedDict 的类,但最新的 Python3.7 版本,此类已经得到了全面的支持。这就要求在字典理解、json 序列化/反序列化等操作中保持字典原先的顺序。

下面来看个例子:

import json

x = {str(i):i for i in range(5)}

json.loads(json.dumps(x))

# Python 2

{u'1': 1, u'0': 0, u'3': 3, u'2': 2, u'4': 4}

# Python 3

{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4}

这种保顺性同样适用于 Python3.6 版本中的 **kwargs:它们的顺序就像参数中显示的那样。当设计数据流程时,参数的顺序至关重要。

以前,我们必须以这样繁琐的方式来编写:

from torch import nn

# Python 2

model = nn.Sequential(OrderedDict([

('conv1', nn.Conv2d(1,20,5)),

('relu1', nn.ReLU()),

('conv2', nn.Conv2d(20,64,5)),

('relu2', nn.ReLU())

]))

# Python 3.6+, how it *can* be done, not supported right now in pytorch

model = nn.Sequential(

conv1=nn.Conv2d(1,20,5),

relu1=nn.ReLU(),

conv2=nn.Conv2d(20,64,5),

relu2=nn.ReLU())

)

注意到了吗?名称的唯一性也会被自动检查。

▌迭代拆封

Python3 中引入迭代式拆封功能,下面来看一段代码:

# handy when amount of additional stored info may vary between experiments, but the same code can be used in all cases

model_paramteres, optimizer_parameters, *other_params = load(checkpoint_name)

# picking two last values from a sequence

*prev, next_to_last, last = values_history

# This also works with any iterables, so if you have a function that yields e.g. qualities,

# below is a simple way to take only last two values from a list

*prev, next_to_last, last = iter_train(args)

▌默认的 pickle 引擎为数组提供更好的压缩

Python3 中引入 pickle 引擎,为数组提供更好的压缩,节省参数空间:

# Python 2

import cPickle as pickle

import numpy

print len(pickle.dumps(numpy.random.normal(size=[1000, 1000])))

# result: 23691675

# Python 3

import pickle

import numpy

len(pickle.dumps(numpy.random.normal(size=[1000, 1000])))

# result: 8000162

这个小的改进节省了3倍的空间,而且运行阶段速度更快。实际上,如果不关心速度的话,类似的压缩性能也可以通过设置参数 protocol=2 来实现,但是用户经常会忽略这个选项或者根本不了解这个功能。

▌更安全的解析功能

Python3 能为代码提供更安全的解析,提高代码的可读性。具体如下段代码所示:

labels =

predictions = [model.predict(data) for data, labels in dataset]

# labels are overwritten in Python 2

# labels are not affected by comprehension in Python 3

关于 super(),simply super()

Python2 中的 super() 方法,是常见的错误代码。我们来看这段代码:

# Python 2

class MySubClass(MySuperClass):

def __init__(self, name, **options):

super(MySubClass, self).__init__(name='subclass', **options)

# Python 3

class MySubClass(MySuperClass):

def __init__(self, name, **options):

super().__init__(name='subclass', **options)

有关 super() 方法及方法解析顺序的更多内容,参见 stackoverflow:

▌更好的 IDE 会给出变量注释

编程过程中使用一个好的IDE,能够给初学者一种更好的编程体验。一个好的IDE能够给不同的编程语言如Java、C#等,提供友好的编程环境及非常有用的编程建议,因为在执行代码之前,所有标识符的类型都是已知的。

对于 Python,虽然这些 IDE 的功能是很难实现,但是代码的注释能够在编程过程帮助到我们:

以清晰的形式提示你下一步想要做的

从 IDE 获取良好的建议

这是 PyCharm IDE 的一个示例。虽然例子中所使用的函数不带注释,但是这些带注释的变量,利用代码的后向兼容性,也能保证程序的正常工作。

▌多种拆封(unpacking)

下面是 Python3 中字典融合的代码示例:

x = dict(a=1, b=2)

y = dict(b=3, d=4)

# Python 3.5+

z = {**x, **y}

# z = {'a': 1, 'b': 3, 'd': 4}, note that value for `b` is taken from the latter dict.

如果你想对比两个版本之间的差异性,可以参考以下这个链接来了解更多的信息:

aame 方法对于 Python 中的列表(list)、元组(tuple)和集合(set)等类型都是有效的,通过下面这段代码我们能够更清楚地了解它们的工作原理,其中a、b、c是任意的可迭代对象:

[*a, *b, *c] # list, concatenating

(*a, *b, *c) # tuple, concatenating

{*a, *b, *c} # set, union

此外,函数同样支持 *args 和 **kwargs 的 unpacking 过程:

Python 3.5+

do_something(**{**default_settings, **custom_settings})

# Also possible, this code also checks there is no intersection between keys of dictionaries

do_something(**first_args, **second_args)

▌不会过时的技术—只带关键字参数的 API

我们来看这段代码:

model = sklearn.svm.SVC(2, 'poly', 2, 4, 0.5)

显而易见,这段代码的作者还不熟悉 Python 的代码风格,很可能刚从 C++ 或 rust语言转 Python。代码风格不仅是个人偏好的问题,还因为在 SVC 接口中改变参数顺序(adding/deleting)会使代码无效。特别是对于 sklearn,经常要通过重新排序或重命名大量的算法参数以提供一致的 API。而每次的重构都可能使代码失效。

在 Python3中依赖库的编写者通常会需要使用*以明确地命名参数:

class SVC(BaseSVC):

def __init__(self, *, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, ... )

使用时,用户需要明确规定 sklearn.svm.SVC(C=2, kernel=’poly’, degree=2, gamma=4, coef0=0.5) 中参数的命名。

这种参数命名机制使得 API 同时兼具可靠性和灵活性。

▌微调:math模块中的常量

Python3 中 math 模块的改动,可以查看下面这段代码:

# Python 3

math.inf # 'largest' number

math.nan # not a number

max_quality = -math.inf # no more magic initial values!

for model in trained_models:

max_quality = max(max_quality, compute_quality(model, data))

▌微调:单精度整数类型

Python 2 中提供了两种基本的整数类型,即 int(64 位符号整数)和用于长整型数值计算的 long 类型(长整型)。而在 Python 3 中对单精度的整型数据有个微小的改动,使其包含长整型(long) 的运算。下面这段代码教你如何查看整型值:

isinstance(x, numbers.Integral) # Python 2, the canonical way

isinstance(x, (long, int)) # Python 2

isinstance(x, int) # Python 3, easier to remember

▌其他改动

Enums 的改动具有理论价值,是因为字符串输入已广泛应用在 python 数据栈中。Enums - 虽然不与 numpy 库交互,但是在 pandas 中有良好的兼容性。

协同程序将很有可能用于数据流程的处理,虽然目前还没有大规模应用的出现。

Python 3 有稳定的 ABI。

Python 3 支持 unicode 编码格式,如 ω = Δφ / Δt 也是可以允许的,但最好使用兼容性更好的旧 ASCII 名称。

一些库比如 jupyterhub(jupyter in cloud)、django 和新版 ipython 都只支持 Python 3,因此这些用处不大的库对你来讲,可能只会偶尔使用一次。

▌数据科学中代码迁移所会碰到的问题及解决方案

放弃对嵌套参数的支持:

map(lambda x, (y, z): x, z, dict.items())

然而,它依然能够完美地适用于不同的理解:

{x:z for x, (y, z) in d.items()}

通常,理解在 Python2 和 3 之间差异能够帮助我们更好地‘转义’代码。

map(), .keys(), .values(), .items() 等等,返回的是迭代器而不是列表。迭代器的主要问题包括:没有琐碎的分割,以及无法进行二次迭代。将返回的结果转化为列表几乎可以解决所有问题。

▌Python 机器学习和 python 数据科学领域所会碰到的主要问题

这些课程的作者首先要花点时间解释 python 中什么是迭代器,为什么它不能像字符串那样被分片/级联/相乘/二次迭代(以及如何处理它)。

我相信大多数课程的作者都很希望能够避开这些繁琐的细节,但是现在看来这几乎是个不可避免的话题。

▌结论

Python 的两个版本( Python2 与 Python3 )共存了近10年的时间。时至今日,我们不得不说:是时候该转向 Python 3 了。

科学研究和实际生产中,代码应该更短,可读性更强,并且在迁移到 Python 3 后的代码库将更加得安全。

目前 Python 的大多数库仍同时支持 2.x 和 3.x 两个版本。但我们不应等到这些依赖库开始停止支持 Python 2 才开始转向 Python3,我们现在就可以享受新语言的功能。

迁移到 Python3 后,我敢保证你的程序运行会更加顺畅:「我们不会再做向后不兼容的事情了(https://snarky.ca/why-python-3-exists/)」。

参考内容:

Copyright © 2010-2022 ngui.cc 版权所有 |关于我们| 联系方式| 豫B2-20100000