第P10周:Pytorch实现车牌识别

article/2024/7/17 20:59:21

第P10周:Pytorch实现车牌识别

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

在之前的案例中,我们多是使用datasets.ImageFolder函数直接导入已经分类好的数据集形成Dataset,然后使用DataLoader加载Dataset,但是如果对无法分类的数据集,我们如何导入,并进行识别呢?

本周我将自定义一个MyDataset加载车牌数据集并完成车牌识别

🍺 基础要求:

  1. 学习并理解本文

🍺 拔高要求:

  1. 对单张车牌进行识别

🏡我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • torch==2.2.2
    • torchvision==0.17.2

前期准备

  • 如果设备上支持GPU就使用GPU,否则使用CPU
  • Mac上的GPU使用mps
from torchvision.transforms import transforms
from torch.utils.data       import DataLoader
from torchvision            import datasets
import torchvision.models   as models
import torch.nn.functional  as F
import torch.nn             as nn
import torch,torchvisionimport os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息# this ensures that the current MacOS version is at least 12.3+
print(torch.backends.mps.is_available())# this ensures that the current current PyTorch installation was built with MPS activated.
print(torch.backends.mps.is_built())# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
device # # 使用的是GPU
True
True
device(type='mps')

一、导入数据

1.1. 获取类别名

import os,PIL,random,pathlibdata_dir = './data/p10/015_licence_plate/'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[-1].split("_")[1].split(".")[0] for path in data_paths]
classeNames[:3]
['沪G1CE81', '云G86LR6', '鄂U71R9F']
data_paths     = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
data_paths_str[:3]
['data/p10/015_licence_plate/000008250_沪G1CE81.jpg','data/p10/015_licence_plate/000015082_云G86LR6.jpg','data/p10/015_licence_plate/000004721_鄂U71R9F.jpg']

1.2. 数据可视化

import os,PIL,random,pathlib
import matplotlib.pyplot as pltplt.figure(figsize=(14,5))
plt.suptitle("数据示例",fontsize=15)for i in range(18):plt.subplot(3,6,i+1)# 显示图片images = plt.imread(data_paths_str[i])plt.imshow(images)plt.show()

在这里插入图片描述

1.3. 标签数字化

import numpy as npchar_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\"豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"]number   = [str(i) for i in range(0, 10)]    # 0 到 9 的数字
alphabet = [chr(i) for i in range(65, 91)]   # A 到 Z 的字母char_set       = char_enum + number + alphabet
char_set_len   = len(char_set)
label_name_len = len(classeNames[0])# 将字符串数字化
def text2vec(text):vector = np.zeros([label_name_len, char_set_len])for i, c in enumerate(text):idx = char_set.index(c)vector[i][idx] = 1.0return vectorall_labels = [text2vec(i) for i in classeNames]

1.4. 加载数据文件

import os
import pandas as pd
from torchvision.io import read_image
from torch.utils.data import Dataset
import torch.utils.data as data
from PIL import Imageclass MyDataset(data.Dataset):def __init__(self, all_labels, data_paths_str, transform):self.img_labels = all_labels      # 获取标签信息self.img_dir    = data_paths_str  # 图像目录路径self.transform  = transform       # 目标转换函数def __len__(self):return len(self.img_labels)def __getitem__(self, index):image    = Image.open(self.img_dir[index]).convert('RGB')#plt.imread(self.img_dir[index])  # 使用 torchvision.io.read_image 读取图像label    = self.img_labels[index]  # 获取图像对应的标签if self.transform:image = self.transform(image)return image, label  # 返回图像和标签

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std =[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = MyDataset(all_labels, data_paths_str, train_transforms)
total_data
<__main__.MyDataset at 0x16cbaa430>

1.5. 划分数据

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_size,test_size
(10940, 2735)
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=16,shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset,batch_size=16,shuffle=True)print("The number of images in a training set is: ", len(train_loader)*16)
print("The number of images in a test set is: ", len(test_loader)*16)
print("The number of batches per epoch is: ", len(train_loader))
The number of images in a training set is:  10944
The number of images in a test set is:  2736
The number of batches per epoch is:  684
for X, y in test_loader:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]:  torch.Size([16, 3, 224, 224])
Shape of y:  torch.Size([16, 7, 69]) torch.float64

二、自建模型

2.1. 搭建模型

class Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*50*50, label_name_len*char_set_len)self.reshape = Reshape([label_name_len,char_set_len])def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))      x = F.relu(self.bn2(self.conv2(x)))     x = self.pool(x)                        x = F.relu(self.bn4(self.conv4(x)))     x = F.relu(self.bn5(self.conv5(x)))  x = self.pool(x)                        x = x.view(-1, 24*50*50)x = self.fc1(x)# 最终reshapex = self.reshape(x)return x# 定义Reshape层
class Reshape(nn.Module):def __init__(self, shape):super(Reshape, self).__init__()self.shape = shapedef forward(self, x):return x.view(x.size(0), *self.shape)print("Using {} device".format(device))model = Network_bn().to(device)
model
Using mps deviceNetwork_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=483, bias=True)(reshape): Reshape()
)

2.2. 查看模型详情

!pip install torchsummary
Looking in indexes: https://mirrors.aliyun.com/pypi/simple
Requirement already satisfied: torchsummary in /Users/henry/src/miniconda3/lib/python3.8/site-packages (1.5.1)
# 统计模型参数量以及其他指标
import torchsummary as summarysummary.summary(model.to("cpu"), (3, 224, 224))
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 12, 220, 220]             912BatchNorm2d-2         [-1, 12, 220, 220]              24Conv2d-3         [-1, 12, 216, 216]           3,612BatchNorm2d-4         [-1, 12, 216, 216]              24MaxPool2d-5         [-1, 12, 108, 108]               0Conv2d-6         [-1, 24, 104, 104]           7,224BatchNorm2d-7         [-1, 24, 104, 104]              48Conv2d-8         [-1, 24, 100, 100]          14,424BatchNorm2d-9         [-1, 24, 100, 100]              48MaxPool2d-10           [-1, 24, 50, 50]               0Linear-11                  [-1, 483]      28,980,483Reshape-12                [-1, 7, 69]               0
================================================================
Total params: 29,006,799
Trainable params: 29,006,799
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 26.56
Params size (MB): 110.65
Estimated Total Size (MB): 137.79
----------------------------------------------------------------

注意对比观察模型的输出[-1, 7, 69],我们之前的网络结构输出都是[-1, 7]、[-1, 2]、[-1, 4]这样的二维数据,如果要求模型输出结果是多维数据,那么本案例将是很好的示例。

📮提问:[-1, 7, 69]中的-1是什么意思?

在神经网络中,如果我们不确定一个维度的大小,但是希望在计算中自动推断它,可以使用 -1。这个-1告诉 PyTorch 在计算中自动推断这个维度的大小,以确保其他维度的尺寸不变,并且能够保持张量的总大小不变。

例如,[-1, 7, 69]表示这个张量的形状是一个三维张量,其中第一个维度的大小是不确定的,第二维大小为7,第三大小分别为69。-1的作用是使得总的张量大小等于7 * 69,以适应实际的输入数据大小。

在实际的使用中,通常-1用在批处理维度上,因为在训练过程中,批处理大小可能会有所不同。使用-1可以使模型适应不同大小的批处理输入数据。

三、 训练模型

3.1. 优化器与损失函数

optimizer  = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=0.0001)loss_model = nn.CrossEntropyLoss()

本周任务之一:在下面的代码中我对loss进行了统计更新,请补充acc统计更新部分,即获取每一次测试的ACC值。

任务提示:pred.shape与y.shape是:[batch, 7, 69],在进行acc计算时需注意~


from torch.autograd import Variabledef test(model, test_loader, loss_model):size = len(test_loader.dataset)num_batches = len(test_loader)model.eval()test_loss, correct = 0, 0with torch.no_grad():for X, y in test_loader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_model(pred, y).item()test_loss /= num_batchesprint(f"Avg loss: {test_loss:>8f} \n")return correct,test_lossdef train(model,train_loader,loss_model,optimizer):model=model.to(device)model.train()for i, (images, labels) in enumerate(train_loader, 0): #0是标起始位置的值。images = Variable(images.to(device))labels = Variable(labels.to(device))optimizer.zero_grad()outputs = model(images)loss = loss_model(outputs, labels)loss.backward()optimizer.step()if i % 1000 == 0:    print('[%5d] loss: %.3f' % (i, loss))

3.2. 模型的训练

test_acc_list  = []
test_loss_list = []
epochs = 30for t in range(epochs):print(f"Epoch {t+1}\n--device-----------------------------")train(model,train_loader,loss_model,optimizer)test_acc,test_loss = test(model, test_loader, loss_model)test_acc_list.append(test_acc)test_loss_list.append(test_loss)
print("Done!")
Epoch 1
-------------------------------
[    0] loss: 0.213
Avg loss: 0.071063 Epoch 2
-------------------------------
[    0] loss: 0.033
Avg loss: 0.057604 ......Epoch 30
-------------------------------
[    0] loss: 0.014
Avg loss: 0.026364 Done!

四、 结果分析

import numpy as np
import matplotlib.pyplot as pltx = [i for i in range(1,31)]plt.plot(x, test_loss_list, label="Loss", alpha=0.8)plt.xlabel("Epoch")
plt.ylabel("Loss")plt.legend()    
plt.show()

在这里插入图片描述


http://www.ngui.cc/article/show-2169927.html

相关文章

分享一份 .NET Core 简单的自带日志系统配置,平时做一些测试或个人代码研究,用它就可以了

前言 实际上&#xff0c;.NET Core 内部也内置了一套日志系统&#xff0c;它是一个轻量级的日志框架&#xff0c;用于记录应用程序的日志信息。 它提供了 ILogger 接口和 ILoggerProvider 接口&#xff0c;以及一组内置的日志提供程序&#xff08;如 Console、Debug、EventSo…

基于C#开发web网页管理系统模板流程-参数传递

点击返回目录-> 基于C#开发web网页管理系统模板流程-总集篇-CSDN博客 前言 当用户长时间未在管理系统界面进行操作&#xff0c;或者用户密码进行了更改&#xff0c;显然用户必须重新登录以验证身份&#xff0c;如何实现这个功能呢&#xff1f; HTTP Cookie&#xff08;也叫 …

Linux:线程概念 线程控制

Linux&#xff1a;线程概念 & 线程控制 线程概念轻量级进程 LWP页表 线程控制POSIX 线程库 - ptherad线程创建pthread_createpthread_self 线程退出pthread_exitpthread_cancelpthread_joinpthread_detach 线程架构线程与地址空间线程与pthread动态库 线程的优缺点 线程概念…

HAL库--LCD实验

屏幕这一块没什么搞头&#xff0c;直接用迪文屏 文章只起个记录作用 显示器分类 LCD简介 Liquid Crystal Display&#xff0c;即液晶显示器&#xff0c;由&#xff1a;玻璃基板、背光、驱动IC等组成。全彩LCD&#xff0c;是一种全彩显示屏&#xff08;RGB565、RGB888&#xff…

java操作数据库语法

1 新建数据库 1.1 新建数据库 1 启动mysql数据库 2 新建数据库 1.2 mysql数据库语法 1 选择数据库 use java_demo1 2 移除数据库 drop database java_web1 3 创建表 CREATE TABLE user (id int(11) PRIMARY KEY AUTO_INCREMENT,name varchar(255) NOT NULL,age int(11)…

unidbg讲解V1

前言 unidbg是什么? unidbg是一个Java项目,可以帮助我们去模拟一个安卓或IOS设备,用于去执行so文件中的算法,从而不需要再去逆向他内部的算法。最终会产出一个jar包,可以被python进行调用。 如何使用unidbg? 下载github上开源的项目:https://github.com/zhkl0228/un…

《pvz植物大战僵尸杂交版》V2.0.88整合包火爆全网,支持安卓、ios、电脑等!

今天来给大家安利一款让人欲罢不能的游戏——《植物大战僵尸杂交版》2.0.88版。这可不是普通的植物大战僵尸&#xff0c;它可是席卷了B站&#xff0c;火爆全网的存在&#xff01; 先说说这个版本&#xff0c;它可是网络上现存最全的植物大战僵尸杂交版整合包。里面不仅有修改工…

分布式文件存储 - - - MinIO从入门到飞翔

MinIO从入门到飞翔 文章目录 MinIO从入门到飞翔0、前言1、分布式文件系统2、MinIO 介绍3、 MinIO安装&#xff08;docker&#xff09;4、基本概念5、通过代码上传文件到MinIO6、封装MinIO为starter7、在其他项目中集成封装好的模块 0、前言 对象存储是一种数据存储架构&#x…

JavaScript快速入门系列-3(函数基础)

第三章:函数基础 3.1 函数定义与调用3.1.1 函数声明3.1.2 函数表达式3.2 参数与返回值3.3 匿名函数与立即执行函数表达式(IIFE)3.3.1 匿名函数3.3.2 立即执行函数表达式3.4 箭头函数3.4.1 箭头函数与this3.5 函数的高级话题3.5.1 闭包3.5.2 函数柯里化3.5.3 高阶函数小结在Jav…

C#聊天室②

客户端 桌面 MyClient client;public Form1(){InitializeComponent();}// 进入聊天室按钮方法private void button1_Click(object sender, EventArgs e){if (!string.IsNullOrEmpty(textBox1.Text)){// 开始连接服务器 封装一个自定义客户端类client new MyClient(); // 给cl…