基于python语言,实现经典差分进化算法(DE)对多车场(Multi-depot)、异构固定车辆(heterogeneous fixed fleet)、带有服务时间窗(time window)等限制约束的车辆路径规划问题((MD)HFVRPTW)进行求解。
目录
- 往期资料
- 1. 适用场景
- 2. 求解效果
- 3. 代码分析
- 4. 数据格式
- 5. 分步实现
- 6. 完整代码
- 参考
往期资料
- python实现6种智能算法求解CVRP问题
- python实现7种智能算法求解MDVRP问题
- python实现7种智能算法求解MDVRPTW问题
1. 适用场景
- 求解HFVRPTW或MDHFVRPTW
- 异构固定车队
- 车辆容量不小于需求节点最大需求
- 车辆路径长度或运行时间无限制
- 需求节点服务成本满足三角不等式
- 节点时间窗至少满足车辆路径只包含一个需求节点的情况
- 多车辆基地或单一
- 各车场车辆总数满足实际需求
2. 求解效果
(1)收敛曲线
(2)车辆路径
3. 代码分析
本算法继续采用将所有需求节点构造为一个有序列表的编码方式,并运用在邻域寻优过程中。当需要评估染色体质量时需采用split方法,在考虑车场、异构固定车队、服务时间窗等约束条件下,将有序列表分割为多个可行的车辆路径。split过程也是整个算法的核心,这里复现文末的参考文献中的算法3,并做了适当微调。整个算法的函数调用关系如下图(采用PyCallGraph绘制)。
4. 数据格式
以csv文件储存数据,其中demand.csv文件记录需求节点数据,共包含需求节点id,需求节点横坐标,需求节点纵坐标,需求量;depot.csv文件记录车场节点数据,共包含车场id,车场横坐标,车场纵坐标,车队类型,车辆容量,车辆速度,车辆数量,车辆固定成本,车辆单位变动成本,车辆最早开始服务时间,车辆最晚结束服务时间。需要注意的是:需求节点id应为整数,从0开始编号,车场节点id任意,但不可与需求节点id重复(建议以 ‘d’+int 形式,便于程序可视化路线)。 可参考github主页相关文件。
5. 分步实现
(1)数据结构
定义Sol()类,Demand()类,Vehicle()类,Model()类,其属性如下表:
- Sol()类,表示一个可行解
属性 | 描述 |
---|---|
node_id_list | 需求节点id有序排列集合 |
obj | 优化目标值 |
route_list | 车辆路径集合,对应MDVRPTW的解 |
timetable_list | 车辆节点访问时间集合,对应MDVRPTW的解 |
distance_of_routes | 总旅行距离 |
time_of_routes | 总时间 |
- Demand()类,表示一个需求节点
属性 | 描述 |
---|---|
id | 物理节点id,需唯一 |
x_coord | 物理节点x坐标 |
y_coord | 物理节点y坐标 |
demand | 物理节点需求 |
start_time | 最早开始服务(被服务)时间 |
end_time | 最晚结束服务(被服务)时间 |
service_time | 需求节点服务时间 |
- Vehicle()类,表示一个车队节点
属性 | 描述 |
---|---|
depot_id | 车辆归属的车场节点节点id,需唯一 |
x_coord | 车辆归属车场节点x坐标 |
y_coord | 车辆归属车场节点y坐标 |
type | 车辆类型 |
capacity | 车辆容量 |
free_speed | 车辆运营速度 |
fixed_cost | 车辆固定成本 |
variable_cost | 车辆变动成本 |
start_time | 最早开始服务时间 |
end_time | 最晚结束服务时间 |
- Model()类,存储算法参数
属性 | 描述 |
---|---|
best_sol | 全局最优解,值类型为Sol() |
sol_list | 蚁群集合,值类型为Sol() |
demand_dict | 需求节点集合(字典),值类型为Demand() |
vehicle_dict | 车队集合(字典),值类型为Vehicle() |
vehicle_type_list | 车队id集合 |
demand_id_list | 需求节点id集合 |
distance_matrix | 节点距离矩阵 |
number_of_demands | 需求节点数量 |
opt_type | 优化目标类型,0:最小旅行距离,1:最小时间成本 |
Cr | 交叉概率 |
F | 缩放因子 |
popsize | 种群规模 |
(2)文件读取
def readCSVFile(demand_file,depot_file,model):with open(demand_file,'r') as f:demand_reader=csv.DictReader(f)for row in demand_reader:demand = Demand()demand.id = int(row['id'])demand.x_coord = float(row['x_coord'])demand.y_coord = float(row['y_coord'])demand.demand = float(row['demand'])demand.start_time=float(row['start_time'])demand.end_time=float(row['end_time'])demand.service_time=float(row['service_time'])model.demand_dict[demand.id] = demandmodel.demand_id_list.append(demand.id)model.number_of_demands=len(model.demand_id_list)with open(depot_file, 'r') as f:depot_reader = csv.DictReader(f)for row in depot_reader:vehicle = Vehicle()vehicle.depot_id = row['depot_id']vehicle.x_coord = float(row['x_coord'])vehicle.y_coord = float(row['y_coord'])vehicle.type = row['vehicle_type']vehicle.capacity=float(row['vehicle_capacity'])vehicle.free_speed=float(row['vehicle_speed'])vehicle.numbers=float(row['number_of_vehicle'])vehicle.fixed_cost=float(row['fixed_cost'])vehicle.variable_cost=float(row['variable_cost'])vehicle.start_time=float(row['start_time'])vehicle.end_time=float(row['end_time'])model.vehicle_dict[vehicle.type] = vehiclemodel.vehicle_type_list.append(vehicle.type)
(3)计算距离矩阵
"计算距离矩阵"
def calDistanceMatrix(model):for i in range(len(model.demand_id_list)):from_node_id = model.demand_id_list[i]for j in range(i + 1, len(model.demand_id_list)):to_node_id = model.demand_id_list[j]dist = sqrt((model.demand_dict[from_node_id].x_coord - model.demand_dict[to_node_id].x_coord) ** 2+ (model.demand_dict[from_node_id].y_coord - model.demand_dict[to_node_id].y_coord) ** 2)model.distance_matrix[from_node_id, to_node_id] = distmodel.distance_matrix[to_node_id, from_node_id] = distfor _, vehicle in model.vehicle_dict.items():dist = sqrt((model.demand_dict[from_node_id].x_coord - vehicle.x_coord) ** 2+ (model.demand_dict[from_node_id].y_coord - vehicle.y_coord) ** 2)model.distance_matrix[from_node_id, vehicle.type] = distmodel.distance_matrix[vehicle.type, from_node_id] = dist
(4)分割路径
split过程采用标号法最短路思想,为了避免在搜索过程中产生大量劣质节点标签,通过一定规则删除劣质标签:根据帕累托删除被支配的标签;根据剩余容量与剩余需求决定是否生成新标签。
在搜索过程中需要计算可能车辆路径的成本(时间成本或距离成本),如果采用时间成本,这里为了简化,只计算旅行距离成本,忽略了等待时间成本。但在计算适应度部分是严格按照时间成本内容计算的(旅行时间成本+等待时间成本)。
"检查路径是否满足时间要求,不满足要求则不会产生新的标签"
def checkTimeWindow(route,model,vehicle):timetable=[]departure=0for i in range(len(route)):if i == 0:next_node_id = route[i + 1]travel_time = int(model.distance_matrix[vehicle.type, next_node_id] /vehicle.free_speed)departure = max(0, model.demand_dict[next_node_id].start_time - travel_time)timetable.append((int(departure), int(departure)))elif 1 <= i <= len(route) - 2:last_node_id = route[i - 1]current_node_id = route[i]current_node = model.demand_dict[current_node_id]travel_time = int(model.distance_matrix[last_node_id, current_node_id] / vehicle.free_speed)arrival = max(timetable[-1][1] + travel_time, current_node.start_time)departure = arrival + current_node.service_timetimetable.append((int(arrival), int(departure)))if departure > current_node.end_time:departure = float('inf')breakelse:last_node_id = route[i - 1]travel_time = int(model.distance_matrix[last_node_id, vehicle.type] / vehicle.free_speed)departure = timetable[-1][1] + travel_timetimetable.append((int(departure), int(departure)))if departure<vehicle.end_time:return Trueelse:return False"当产生新的标签W后,检查剩余的车辆容量之和是否能满足剩余未被检车的检点的总需求,如果总容量<总需求,则舍弃W,表明采用W后会导致解不可行"
"这也是减少无效标签的途径之一"
def checkResidualCapacity(residual_node_id_list,W,model):residual_fleet_capacity=0residual_demand = 0for node_id in residual_node_id_list:residual_demand+=model.demand_dict[node_id].demandfor k,v_type in enumerate(model.vehicle_type_list):vehicle=model.vehicle_dict[v_type]residual_fleet_capacity+=(vehicle.numbers-W[k+4])*vehicle.capacityif residual_demand<=residual_fleet_capacity:return Trueelse:return False"由于标号法会产生大量标签,为了降标签数量,减少对劣质标签的搜索,在插入新标签时根据帕累托,删除支配解"
def updateNodeLabels(label_list,W,number_of_lables):new_label_list=[]if len(label_list)==0:number_of_lables += 1W[0] = number_of_lablesnew_label_list.append(W)else:for label in label_list:if W[3]<=label[3] and sum(W[4:])<=sum(label[4:]):if W not in new_label_list:number_of_lables += 1W[0] = number_of_lablesnew_label_list.append(W)elif W[3]<=label[3] and sum(W[4:])>sum(label[4:]):new_label_list.append(label)if W not in new_label_list:number_of_lables += 1W[0] = number_of_lablesnew_label_list.append(W)elif W[3]>label[3] and sum(W[4:])<sum(label[4:]):new_label_list.append(label)if W not in new_label_list:number_of_lables += 1W[0] = number_of_lablesnew_label_list.append(W)elif W[3]>label[3] and sum(W[4:])>=sum(label[4:]):new_label_list.append(label)return new_label_list,number_of_lables"根据标号法的求解结果,从中提取出各车辆路径"
def extractRoutes(V,node_id_list,model):route_list = []min_obj=float('inf')pred_label_id=Nonev_type=None# search the min cost label of last node of the node_id_listfor label in V[model.number_of_demands-1]:if label[3]<=min_obj:min_obj=label[3]pred_label_id=label[1]v_type=label[2]# generate routes by pred_label_idroute=[node_id_list[-1]]indexs=list(range(0,model.number_of_demands))[::-1]start=1while pred_label_id!=1:for i in indexs[start:]:stop=Falsefor label in V[i]:if label[0]==pred_label_id:stop=Truepred_label_id=label[1]start=iv_type_=label[2]breakif not stop:route.insert(0,node_id_list[i])else:route.insert(0,v_type)route.append(v_type)route_list.append(route)route=[node_id_list[i]]v_type=v_type_route.insert(0,v_type)route.append(v_type)route_list.append(route)return route_list"采用标号法对node_id_list进行分割,得到车辆路径"
def splitRoutes(node_id_list,model):"""V: dict,key=id,value=[n1,n2,n3,n4,n5,....]id:node_id_list的索引n1: 当前标签的生成次序n2: 生成当前标签的前一个标签的idn3: 当前标签对应的车辆类型n4: 当前路径的费用,对应与优化目标,当优化目标为旅行时间时,这里为简化计算只考虑节点间的旅行时间,舍去了等待时间n5-: 截止到当前标签,各类型车辆的使用数量这里采用先搜索车辆集合再搜索标签集合的方法,与原文是相反的"假设有a个标签,n个车需要搜索若按照原文的搜索顺序:对于任意一个label,都要判断当前路径对于n个车是否满足时间窗要求,搜索次数=a*n;若按照本文的搜索顺序。对于任意一个车辆类型,若路径不满足时间窗要求则不进行标签搜索,因此搜索次数应<a*n"""V={i:[] for i in model.demand_id_list}V[-1]=[[0]*(len(model.vehicle_type_list)+4)] # -1表示虚拟车场的索引V[-1][0][0]=1 # 虚拟车场的标签id为1V[-1][0][1]=1 # 虚拟车场的标签的前向标签也为1number_of_lables=1for i in range(model.number_of_demands):n_1=node_id_list[i]j=iload=0distance={v_type:0 for v_type in model.vehicle_type_list}while True:n_2=node_id_list[j]load=load+model.demand_dict[n_2].demandstop = Falsefor k,v_type in enumerate(model.vehicle_type_list):vehicle=model.vehicle_dict[v_type]if i == j:distance[v_type]=model.distance_matrix[v_type,n_1]+model.distance_matrix[n_1,v_type]else:n_3=node_id_list[j-1]distance[v_type]=distance[v_type]-model.distance_matrix[n_3,v_type]+model.distance_matrix[n_3,n_2]\+model.distance_matrix[n_2,v_type]route=node_id_list[i:j+1]route.insert(0,v_type)route.append(v_type)if not checkTimeWindow(route,model,vehicle): # 检查时间窗,只有满足时间窗才有可能生成新的标签,否则跳过continuefor id,label in enumerate(V[i-1]):if load<=vehicle.capacity and label[k+4]<vehicle.numbers:stop=True"计算路径成本,这里计算旅行时间成本时,只考虑节点间的旅行时间,暂不考虑等待时间成本"if model.opt_type==0:cost=vehicle.fixed_cost+distance[v_type]*vehicle.variable_costelse:cost=vehicle.fixed_cost+distance[v_type]/vehicle.free_speed*vehicle.variable_cost"由于label是W的前向标签,因此可以在label的基础上生成W"W=deepcopy(label)"将W的前向标签id设置为label的id"W[1]=V[i-1][id][0]"设置W使用的车辆类型"W[2]=v_type"在label的基础上更新W的cost"W[3]=W[3]+cost"在label的基础上更新使用的车辆数"W[k+4]=W[k+4]+1"检车剩余容量约束,判断是否有可能将W作为当前节点的新的标签"if checkResidualCapacity(node_id_list[j+1:],W,model):"根据帕累托将W插入到当前节点的标签列表中,同时删除被支配标签"label_list,number_of_lables=updateNodeLabels(V[j],W,number_of_lables)V[j]=label_listj+=1if j>=len(node_id_list) or stop==False:breakif len(V[model.number_of_demands-1])>0:route_list=extractRoutes(V, node_id_list, model)return route_listelse:print("Failed to split the node id list because of the insufficient capacity")return None
(5)适应度计算
对于解的评价可采用旅行时间成本或旅行距离成本,关于某一条车辆路径的成本计算如下:
- 距离成本=车辆固定成本+旅行距离*变动成本
- 时间成本=车辆固定成本+(旅行时间+等待时间)*变动成本
这里认为单位距离成本=单位旅行时间成本=单位等待时间成本
"计算解的成本,这里对于时间成本包含了节点间旅行时间以及节点处的等待时间"
def calTravelCost(route_list,model):timetable_list=[]distance_of_routes=0time_of_routes=0obj=0for route in route_list:timetable=[]vehicle=model.vehicle_dict[route[0]]travel_distance=0travel_time=0v_type = route[0]free_speed=vehicle.free_speedfixed_cost=vehicle.fixed_costvariable_cost=vehicle.variable_costfor i in range(len(route)):if i == 0:next_node_id=route[i+1]travel_time_between_nodes=model.distance_matrix[v_type,next_node_id]/free_speeddeparture=max(0,model.demand_dict[next_node_id].start_time-travel_time_between_nodes)timetable.append((int(departure),int(departure)))elif 1<= i <= len(route)-2:last_node_id=route[i-1]current_node_id=route[i]current_node = model.demand_dict[current_node_id]travel_time_between_nodes=model.distance_matrix[last_node_id,current_node_id]/free_speedarrival=max(timetable[-1][1]+travel_time_between_nodes,current_node.start_time)departure=arrival+current_node.service_timetimetable.append((int(arrival),int(departure)))travel_distance += model.distance_matrix[last_node_id, current_node_id]travel_time += model.distance_matrix[last_node_id, current_node_id]/free_speed+\+ max(current_node.start_time - arrival, 0)else:last_node_id = route[i - 1]travel_time_between_nodes = model.distance_matrix[last_node_id,v_type]/free_speeddeparture = timetable[-1][1]+travel_time_between_nodestimetable.append((int(departure),int(departure)))travel_distance += model.distance_matrix[last_node_id,v_type]travel_time += model.distance_matrix[last_node_id,v_type]/free_speeddistance_of_routes+=travel_distancetime_of_routes+=travel_timeif model.opt_type==0:obj+=fixed_cost+travel_distance*variable_costelse:obj += fixed_cost + travel_time *variable_costtimetable_list.append(timetable)return timetable_list,time_of_routes,distance_of_routes,obj"计算适应度"
def calObj(sol,model):best_sol=Sol()best_sol.obj=float('inf')number_of_split_failures=0# calculate travel distance and travel timeret = splitRoutes(sol.node_id_list, model)if ret is not None:sol.route_list = retsol.timetable_list, sol.time_of_routes, sol.distance_of_routes, sol.obj = calTravelCost(sol.route_list, model)else:number_of_split_failures += 1sol.obj = 10**5
(6)初始解生成
def generateInitialSol(model):demand_id_list=deepcopy(model.demand_id_list)for i in range(model.popsize):seed=int(random.randint(0,10))random.seed(seed)random.shuffle(demand_id_list)sol=Sol()sol.node_id_list=deepcopy(demand_id_list)calObj(sol,model)model.sol_list.append(sol)if sol.obj<model.best_sol.obj:model.best_sol=deepcopy(sol)
(7)突变操作
#差分变异;变异策略:DE/rand/1/bin
def muSol(model,v1):x1=model.sol_list[v1].node_id_listwhile True:v2=random.randint(0,len(model.demand_id_list)-1)if v2!=v1:breakwhile True:v3=random.randint(0,len(model.demand_id_list)-1)if v3!=v2 and v3!=v1:breakx2=model.sol_list[v2].node_id_listx3=model.sol_list[v3].node_id_listmu_x=[min(int(x1[i]+model.F*(x2[i]-x3[i])),len(model.demand_id_list)-1) for i in range(len(model.demand_id_list)) ]return mu_x
(8)交叉操作
def adjustRoutes(demand_id_list,model):all_node_list=deepcopy(model.demand_id_list)repeat_node=[]for id,node_id in enumerate(demand_id_list):if node_id in all_node_list:all_node_list.remove(node_id)else:repeat_node.append(id)for i in range(len(repeat_node)):demand_id_list[repeat_node[i]]=all_node_list[i]return demand_id_list#差分交叉
def crossSol(model,vx,vy):cro_x=[]for i in range(len(model.demand_id_list)):if random.random()<model.Cr:cro_x.append(vy[i])else:cro_x.append(vx[i])cro_x=adjustRoutes(cro_x,model)return cro_x
(9)绘制收敛曲线
def plotObj(obj_list):plt.rcParams['font.sans-serif'] = ['SimHei'] #show chineseplt.rcParams['axes.unicode_minus'] = False # Show minus signplt.plot(np.arange(1,len(obj_list)+1),obj_list)plt.xlabel('Iterations')plt.ylabel('Obj Value')plt.grid()plt.xlim(1,len(obj_list)+1)plt.show()
(10)绘制车辆路线
def plotRoutes(model):for route in model.best_sol.route_list:x_coord=[model.vehicle_dict[route[0]].x_coord]y_coord=[model.vehicle_dict[route[0]].y_coord]for node_id in route[1:-1]:x_coord.append(model.demand_dict[node_id].x_coord)y_coord.append(model.demand_dict[node_id].y_coord)x_coord.append(model.vehicle_dict[route[-1]].x_coord)y_coord.append(model.vehicle_dict[route[-1]].y_coord)plt.grid()if route[0]=='v1':plt.plot(x_coord,y_coord,marker='o',color='black',linewidth=0.5,markersize=5)elif route[0]=='v2':plt.plot(x_coord,y_coord,marker='o',color='orange',linewidth=0.5,markersize=5)elif route[0]=='v3':plt.plot(x_coord,y_coord,marker='o',color='r',linewidth=0.5,markersize=5)else:plt.plot(x_coord, y_coord, marker='o', color='b', linewidth=0.5, markersize=5)plt.xlabel('x_coord')plt.ylabel('y_coord')plt.show()
(11)输出结果
def outPut(model):work=xlsxwriter.Workbook('result.xlsx')worksheet=work.add_worksheet()worksheet.write(0, 0, 'time_of_routes')worksheet.write(0, 1, 'distance_of_routes')worksheet.write(0, 2, 'opt_type')worksheet.write(0, 3, 'obj')worksheet.write(1,0,model.best_sol.time_of_routes)worksheet.write(1,1,model.best_sol.distance_of_routes)worksheet.write(1,2,model.opt_type)worksheet.write(1,3,model.best_sol.obj)worksheet.write(2, 0,'vehicleID')worksheet.write(2, 1,'depotID')worksheet.write(2, 2, 'vehicleType')worksheet.write(2, 3,'route')worksheet.write(2, 4,'timetable')for row,route in enumerate(model.best_sol.route_list):worksheet.write(row+3,0,str(row+1))depot_id=model.vehicle_dict[route[0]].depot_idworksheet.write(row+3,1,depot_id)worksheet.write(row+3,2,route[0])r=[str(i)for i in route]worksheet.write(row+3,3, '-'.join(r))r=[str(i)for i in model.best_sol.timetable_list[row]]worksheet.write(row+3,4, '-'.join(r))work.close()
(12)主函数
def run(demand_file,depot_file,epochs,Cr,F,popsize,opt_type):""":param demand_file: 需求节点文件路径:param depot_file: 车场节点文件路径:param epochs:迭代次数:param Cr:差分交叉概率:param F:缩放因子:param popsize:种群规模:param opt_type:优化类型:0:最小化车辆数,1:最小化行驶距离:return:"""model=Model()model.Cr=Crmodel.F=Fmodel.popsize=popsizemodel.opt_type=opt_typereadCSVFile(demand_file,depot_file,model)calDistanceMatrix(model)best_sol = Sol()best_sol.obj = float('inf')model.best_sol = best_solgenerateInitialSol(model)history_best_obj = []start_time=time.time()for ep in range(epochs):for i in range(popsize):v1=random.randint(0,len(model.demand_id_list)-1)sol=model.sol_list[v1]mu_x=muSol(model,v1)u=crossSol(model,sol.node_id_list,mu_x)new_sol=Sol()new_sol.node_id_list=ucalObj(new_sol,model)if new_sol.obj<=sol.obj:sol=deepcopy(new_sol)if sol.obj<model.best_sol.obj:model.best_sol=deepcopy(sol)history_best_obj.append(model.best_sol.obj)print("%s/%s, best obj: %s, runtime: %s" % (ep + 1, epochs, model.best_sol.obj, time.time() - start_time))plotObj(history_best_obj)plotRoutes(model)outPut(model)
6. 完整代码
如有错误,欢迎交流。
代码和数据文件可从github主页免费获取:
https://github.com/PariseC/Algorithms_for_solving_VRP
参考
- Order-first split-second methods for vehicle routing problems: A review