pandas入门3

el/2024/4/19 23:07:32

http://www.ngui.cc/el/5179167.html

相关文章

Pandas.DataFrame删除行和列

本文通过一个csv实例文件来展示如何删除Pandas.DataFrame的行和列数据文件名为:example.csv内容为: |date|spring|summer|autumn|winter||----||2000|12.2338809|16.90730113|15.69238313|14.08596223||2001|12.84748057|16.75046873|14.51406637| 13.5037456|2002|13.558175|…

GDBT详解

GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力&#xff0…

在anaconda中安装tensorflow

本文主要介绍如何在Windows下安装TensorFlow。当然建议还是在linux下安装,在windows下开发不太方便。 相关背景 网上现有的方法都是教如何在windows下安装虚拟机或者安装docker来完成TensorFlow的安装。 得益于google目前已经支持直接在windows直接安装&#xff…

归一化,标准化,正则化的概念和区别

归一化(Normalization) 1.把数据变为(0,1)之间的小数。主要是为了方便数据处理,因为将数据映射到0~1范围之内,可以使处理过程更加便捷、快速。 2.把有量纲表达式变换为无量纲表达式&…

dropout的用法

dropout的作用是增加网络的泛化能力,可以用在卷积层和全连接层。但是在卷积层一般不用dropout, dropout是用来防止过拟合的过多参数才会容易过拟合, 所以卷积层没必要, 但是是可以用的,要小心翼翼

LRN局部相应归一化

本笔记记录学习 LRN(Local Response Normalization),若有错误,欢迎批评指正,学习交流。 1.侧抑制(lateral inhibition) 2.计算公式 Hinton在2012年的Alexnet网络中给出其具体的计算公式如下: …

简要介绍一下目标检测的网络,r-cnn, spp-net, fast-rcnn, faster-rcnn

简要介绍一下目标检测的网络 (1)R-CNN的原理:先用框把物体找出来,然后将找出来的框放入CNN中进行分类,这就是RCNN的简单原理。 (2)SPP-net:直接输入整张图片,所有区域…

概率分布中的cdf,pdf, pmf

一 概念解释二 数学表示三概念分析四分布函数的意义五参考文献 一. 概念解释 PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数&#xff0…

[Latex] 所有字体embedded: Type3 PDF文档处理 / True Type转换为Type 1 目录: [正文] Type3转TRUE Type/Type 1 [Appendi

目录: [正文] Type3转TRUE Type/Type 1 [Appendix] TRUE Type转Type 1 (并embedded) 准备提交给ACM与IEEE的论文时,我们手头的文档除了有明确具体字体类型的Type1和TrueType字体外,还经常会出现Type3字体&#xf…

贝叶斯分析

1 先来说一下贝叶斯统计与经典统计的不同之处: 简单说,频率派认为估计对象(参数)是一个未知的固定值。而贝叶斯却认为未知的参数都是随机变量。 我曾经见到这么个不错的例子:我们要通过一些事实估计“爱因斯坦在1905年12月25日晚上八点吸烟”的真假。定义参数:,吸烟;,…