OpenMP并行程序设计——for循环并行化详解

el/2024/4/19 23:30:08

转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/40018735

在C/C++中使用OpenMP优化代码方便又简单,代码中需要并行处理的往往是一些比较耗时的for循环,所以重点介绍一下OpenMP中for循环的应用。个人感觉只要掌握了文中讲的这些就足够了,如果想要学习OpenMP可以到网上查查资料。工欲善其事,必先利其器。如果还没有搭建好omp开发环境的可以看一下OpenMP并行程序设计——Eclipse开发环境的搭建

首先,如何使一段代码并行处理呢?omp中使用parallel制导指令标识代码中的并行段,形式为:

       #pragma omp parallel{每个线程都会执行大括号里的代码}

比如下面这段代码:

#include <iostream>
#include "omp.h"
using namespace std;
int main(int argc, char **argv) {//设置线程数,一般设置的线程数不超过CPU核心数,这里开4个线程执行并行代码段omp_set_num_threads(4);
#pragma omp parallel{cout << "Hello" << ", I am Thread " << omp_get_thread_num() << endl;}
}

omp_get_thread_num()是获取当前线程id号

以上代码执行结果为:

Hello, I am Thread 1
Hello, I am Thread 0
Hello, I am Thread 2
Hello, I am Thread 3

可以看到,四个线程都执行了大括号里的代码,先后顺序不确定,这就是一个并行块。

带有for的制导指令:

for制导语句是将for循环分配给各个线程执行,这里要求数据不存在依赖。

使用形式为:

(1)#pragma omp parallel for

     for()

(2)#pragma omp parallel

    {//注意:大括号必须要另起一行#pragma omp forfor()}

注意:第二种形式中并行块里面不要再出现parallel制导指令,比如写成这样就不可以:

#pragma omp parallel

    {#pragma omp parallel forfor()}

第一种形式作用域只是紧跟着的那个for循环,而第二种形式在整个并行块中可以出现多个for制导指令。下面结合例子程序讲解for循环并行化需要注意的地方。

假如不使用for制导语句,而直接在for循环前使用parallel语句:(为了使输出不出现混乱,这里使用printf代替cout)

#include <iostream>
#include <stdio.h>
#include "omp.h"
using namespace std;
int main(int argc, char **argv) {//设置线程数,一般设置的线程数不超过CPU核心数,这里开4个线程执行并行代码段omp_set_num_threads(4);
#pragma omp parallelfor (int i = 0; i < 2; i++)//cout << "i = " << i << ", I am Thread " << omp_get_thread_num() << endl;printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}

输出结果为:

i = 0, I am Thread 0
i = 0, I am Thread 1
i = 1, I am Thread 0
i = 1, I am Thread 1
i = 0, I am Thread 2
i = 1, I am Thread 2
i = 0, I am Thread 3
i = 1, I am Thread 3

从输出结果可以看到,如果不使用for制导语句,则每个线程都执行整个for循环。所以,使用for制导语句将for循环拆分开来尽可能平均地分配到各个线程执行。将并行代码改成这样之后:

#pragma omp parallel forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());

输出结果为:

i = 4, I am Thread 2
i = 2, I am Thread 1
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 3, I am Thread 1
i = 5, I am Thread 3

可以看到线程0执行i=0和1,线程1执行i=2和3,线程2执行i=4,线程3执行i=5。线程0就是主线程

这样整个for循环被拆分并行执行了。上面的代码中parallel和for连在一块使用的,其只能作用到紧跟着的for循环,循环结束了并行块就退出了。

上面的代码可以改成这样:

#pragma omp parallel{
#pragma omp forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());}

这写法和上面效果是一样的。需要注意的问题来了:如果在parallel并行块里再出现parallel会怎么样呢?回答这个问题最好的方法就是跑一遍代码看看,所以把代码改成这样:

#pragma omp parallel{
#pragma omp parallel forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());}

输出结果:

i = 0, I am Thread 0
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 1, I am Thread 0
i = 2, I am Thread 0
i = 2, I am Thread 0
i = 3, I am Thread 0
i = 3, I am Thread 0
i = 4, I am Thread 0
i = 4, I am Thread 0
i = 5, I am Thread 0
i = 5, I am Thread 0
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 0, I am Thread 0
i = 2, I am Thread 0
i = 1, I am Thread 0
i = 3, I am Thread 0
i = 2, I am Thread 0
i = 4, I am Thread 0
i = 3, I am Thread 0
i = 5, I am Thread 0
i = 4, I am Thread 0
i = 5, I am Thread 0

可以看到,只有一个线程0,也就是只有主线程执行for循环,而且总共执行4次,每次都执行整个for循环!所以,这样写是不对的。

当然,上面说的for制导语句的两种写法是有区别的,比如两个for循环之间有一些代码只能有一个线程执行,那么用第一种写法只需要这样就可以了:

#pragma omp parallel forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());//这里是两个for循环之间的代码,将会由线程0即主线程执行printf("I am Thread %d\n", omp_get_thread_num());
#pragma omp parallel forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());

离开了for循环就剩主线程了,所以两个循环间的代码是由线程0执行的,输出结果如下:

i = 0, I am Thread 0
i = 2, I am Thread 1
i = 1, I am Thread 0
i = 3, I am Thread 1
i = 4, I am Thread 2
i = 5, I am Thread 3
I am Thread 0
i = 4, I am Thread 2
i = 2, I am Thread 1
i = 5, I am Thread 3
i = 0, I am Thread 0
i = 3, I am Thread 1
i = 1, I am Thread 0

但是如果用第二种写法把for循环写进parallel并行块中就需要注意了!

由于用parallel标识的并行块中每一行代码都会被多个线程处理,所以如果想让两个for循环之间的代码由一个线程执行的话就需要在代码前用single或master制导语句标识,master由是主线程执行,single是选一个线程执行,这个到底选哪个线程不确定。所以上面代码可以写成这样:

#pragma omp parallel{
#pragma omp forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
#pragma omp master{//这里的代码由主线程执行printf("I am Thread %d\n", omp_get_thread_num());}
#pragma omp forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());}

效果和上面的是一样的,如果不指定让主线程执行,那么将master改成single即可。

到这里,parallel和for的用法都讲清楚了。接下来就开始讲并行处理时数据的同步问题,这是多线程编程里都会遇到的一个问题。

为了讲解数据同步问题,先由一个例子开始:

#include <iostream>
#include "omp.h"
using namespace std;
int main(int argc, char **argv) {int n = 100000;int sum = 0;omp_set_num_threads(4);
#pragma omp parallel{
#pragma omp forfor (int i = 0; i < n; i++) {{sum += 1;}}}cout << " sum = " << sum << endl;
}

期望的正确结果是100000,但是这样写是错误的。看代码,由于默认情况下sum变量是每个线程共享的,所以多个线程同时对sum操作时就会因为数据同步问题导致结果不对,显然,输出结果每次都不同,这是无法预知的,如下:

第一次输出sum = 58544
第二次输出sum = 77015
第三次输出sum = 78423

那么,怎么去解决这个数据同步问题呢?解决方法如下:

方法一:对操作共享变量的代码段做同步标识

代码修改如下:

#pragma omp parallel{
#pragma omp forfor (int i = 0; i < n; i++) {{
#pragma omp criticalsum += 1;}}}cout << " sum = " << sum << endl;

critical制导语句标识的下一行代码,也可以是跟着一个大括号括起来的代码段做了同步处理。输出结果100000

方法二:每个线程拷贝一份sum变量,退出并行块时再把各个线程的sum相加

并行代码修改如下:

#pragma omp parallel{
#pragma omp for reduction(+:sum)for (int i = 0; i < n; i++) {{sum += 1;}}}

reduction制导语句,操作是退出时将各自的sum相加存到外面的那个sum中,所以输出结果就是100000啦~~

方法三:这种方法貌似不那么优雅

代码修改如下:

int n = 100000;int sum[4] = { 0 };omp_set_num_threads(4);
#pragma omp parallel{
#pragma omp forfor (int i = 0; i < n; i++) {{sum[omp_get_thread_num()] += 1;}}}cout << " sum = " << sum[0] + sum[1] + sum[2] + sum[3] << endl;

每个线程操作的都是以各自线程id标识的数组位置,所以结果当然正确。

数据同步就讲完了,上面的代码中for循环是一个一个i平均分配给各个线程,如果想把循环一块一块分配给线程要怎么做呢?这时候用到了schedule制导语句。下面的代码演示了schedule的用法:

#include <iostream>
#include "omp.h"
#include <stdio.h>
using namespace std;
int main(int argc, char **argv) {int n = 12;omp_set_num_threads(4);
#pragma omp parallel{
#pragma omp for schedule(static, 3)for (int i = 0; i < n; i++) {{printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());}}}
}

上面代码中for循环并行化时将循环很多很多块,每一块大小为3,然后再平均分配给各个线程执行。

输出结果如下:

i = 6, I am Thread 2
i = 3, I am Thread 1
i = 7, I am Thread 2
i = 4, I am Thread 1
i = 8, I am Thread 2
i = 5, I am Thread 1
i = 0, I am Thread 0
i = 9, I am Thread 3
i = 1, I am Thread 0
i = 10, I am Thread 3
i = 2, I am Thread 0
i = 11, I am Thread 3

从输出结果可以看到:线程0执行i=0 1 2,线程1执行i=3 4 5,线程2执行i=6 7 8,线程3执行i=9 10 11,如果后面还有则又从线程0开始分配。

OK,for循环并行化的知识基本讲完了,还有一个有用的制导语句barrier,用它可以在并行块中设置一个路障,必须等待所有线程到达时才能通过,这个一般在并行处理循环前后存在依赖的任务时使用到。

是不是很简单?


作者:陈靖_
来源:CSDN
原文:https://blog.csdn.net/zhongkejingwang/article/details/40350027
版权声明:本文为博主原创文章,转载请附上博文链接!


http://www.ngui.cc/el/5181835.html

相关文章

音视频技术网站

http://blog.yundiantech.com/

c++ 函数式编程(简单示例)

C中一个函数作为作为另一个函数的参数 2016年12月17日 15:59:36 initiallysunny 阅读数&#xff1a;13266 版权声明&#xff1a;本文为博主原创文章&#xff0c;未经博主允许不得转载。 https://blog.csdn.net/Initiallysunny/article/details/53708466 C中一个函数作为作为…

._bootstrap' has no attribute 'SourceFileLoader' 和 'socketio' has no attribute 'Server' 分析解决

之前运行别人的代码&#xff0c;报错缺少各种包&#xff0c;于是直接pip install安装&#xff0c;后来发现&#xff0c;报下面两个错误&#xff0c;很是纠结&#xff0c;网上查阅资料都不能正确的解决问题。 File "/usr/local/lib/python3.6/dist-packages/pkg_resources…

x264 参数详解

https://blog.csdn.net/zhubosa/article/details/51321783

opencv reshape 深拷贝 浅拷贝之坑

今天学习reshape遇见了一个坎&#xff0c;浪费了不少时间&#xff0c;希望后学者不要未该问题浪费过多时间。通常情况下&#xff0c;Opencv 的reshape函数跟Matlab是一致的。A.reshape(0,N)&#xff0c;代表通道不变&#xff0c;行数变为N的变形。但是即便上两个参数没有问题&a…

x264_stack_align 对齐函数

看到x264中对于字节对齐的函数x264_stack_align( x264_slice_write, h )&#xff0c;为什么要字节对齐呢&#xff1f;因为x264中用到的指令集优化SSE2&#xff0c;而SSE2寄存器是128位寄存器&#xff0c;SSE2的指令是对16字节&#xff08;128/8&#xff09;同时处理&#xff0c…

x264 理论与代码系列

https://www.cnblogs.com/TaigaCon/category/1189649.html

统计数据(包括金融、气候、交通等,全面的医疗数据,如EEG、ECG、血压等)

金融、气候、交通等统计数据&#xff1a; https://datamarket.com/data/list/?qprovider:tsdl 权威的医疗数据&#xff08;EEG、ECG、血压&#xff0c;各种医学影像资料等&#xff09;&#xff1a; https://physionet.org/physiobank/database/ &#xff08;格式为.dat&am…

反卷积中( conv2d_transpose)的stride参数

https://blog.csdn.net/u012938704/article/details/52838902 https://blog.csdn.net/qq_38906523/article/details/80520950

受限玻尔兹曼机与深度置信网络相关

https://blog.csdn.net/lily1234567/article/details/80174904 https://blog.csdn.net/itplus/article/details/19408143 https://blog.csdn.net/itplus/article/details/9079973&#xff08;与上面的网址是同一作者&#xff0c;为开源代码分析&#xff09;